MATH4010 Functional Analysis (2020-21): Homework 6. Deadline: 30 Nov 2020

Important Notice:

♣ The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard. Please refer to the course web for details.

 \bigstar Each answer paper must include your name and student ID.

- 1. Let X be a Hilbert space and let $T : X \to X$ be a bounded operator. Show that $\lim_{\lambda \to \infty} \|(T \lambda)^{-1}\| = 0$, where $\lambda > \|T\|$.
- 2. Using the notation given as in Question (1), let $f(t) := t^n + a_{n-1}t^{n-1} + \dots + a_1t + a_0$ be a complex polynomials. Put $f(T) := T^n + a_{n-1}T^{n-1} + \dots + a_1T + a_0I \in \mathcal{L}(X)$.
 - (i) Show that f(T) is invertible in $\mathcal{L}(X)$ if and only if $\alpha \notin \sigma(T)$ for all roots α of f. (Hint: use the Fundamental Theorem of Algebra).
 - (ii) Let f be a polynomial as in Part (i). Show that if $\lambda_0 \in \sigma(T)$, then $f(\lambda_0) \in \sigma(f(T))$.

*** End ***